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Conjugated organic polymers have emerged as an important classScheme 1. Synthesis of Boron-Modified Polythiophenes and
of new materials with applications, for example, in organic light Quaterthiophene Model Compounds (Mes = 2,4,6-trimethylphenyl)
emitting devices, photovoltaics, organic field-effect transistors, and flex _ ,

sensor materials An intriguing aspect is their modification with n messn—{ > \S/ SnMes S Sytes s [ \HEX
inorganic or organometallic functionalities, which provides a means e @: T A7 > [ s

to impart new characteristics and different propertidhie func- sm:a > BusP  [Hex PI-SiMe, SiMeg N
tionalization with organoborane groups is particularly attractive due s l 1. 2n BBry

to their electron-deficient natufewhich can be exploited in the AR W BMes 2 “"Mesc“Hex
sensing of nucleophiles and may lead to unusual electronic s s 1 s ) \2 s
properties. For instance, the use of tri-coordinate organoboranes \ /7 N[ s

as small molecule organic device materials has been successfully [Hex PT-BMes, DMSS2 n
implemented by Shirota and since further pursued by several other _ o

groupst Various examples of conjugated boron-modified polymers . S';”ei s M A I = m

with the boron sites embedded into the conjugated polymer main e A (S 1 Ao e

chain have also been reportedhile this approach leads to facile
preparation of electronically interesting polymers, and in one case consistent with conversion to triarylborane moieties. However, the
n-type semiconductivity has been demonstratetie tunability is chemical shift is slightly upfield relative to the quaterthiophene
limited since two va_lenmes_ (_)f b_oron are t_led up in the polym_er modelQT-BMes; (6 = 69), which likely is due to greater shielding
backbone. Side-chain modification of conjugated polymers with effects in the polymer. GPC analysis coupled with light scattering
boronate moieties has been studied for use as electrochemicaly THE gaveM,, = 20650 (PDI= 1.88, DP= 11, ca. 44 thiophene
sensor$, but the boron centers are electronically stabilized by rings) for PT-BMes,. The peak patterns in the MALDI-TOF
ni-interaction with alkoxy substituents and the polymer films are gspectrum are consistent with the expected repeating units and H,
in many cases insoluble. We describe here a new modular approact\e, and BMes end groups (see Supporting Informatién).

QT-SiMe; SiMeg QT-BMes, BMes;

to soluble polythiophenes that are functionalized with highly
electron-deficient boryl groups.
The silylated polymePT-SiMe; (M,, = 9107, PDI= 1.35) was

To examine the ability of the thiophene groups to adopt a
coplanar conformation that promotes extended conjugation, single-
crystal X-ray structures of the models were obtained. The thiophene

prepared in 66% yield by Stille-type polycondensation (Scheme rings of two independent molecules in the unit cell@F-SiMes

1). The NMR spectra of this new soluble polythiophene are consis- adopt an allrans arrangement, where the central thiophene rings
tent with the proposed structure, and MALDI-TOF analysis showed are coplanar or nearly so (5.87{8)however, they are strongly
peak patterns corresponding to linear polymers with the expecteduwisted (45.13(5Y47.30(5§) relative to the terminal thiophene rings
repeating unit and dihexylbithiophene or Me end groups (Me trans- (see Figure S1 of Supporting Information). In contrast, upon

fer from SnMg groups). The feasibility of the B/Si exchange was
confirmed for the modeQT-SiMes, where treatment with BBr
resulted in selective borylation within 6’MAnalogous reaction of
the silylated polymelPT-SiMe; with a slight excess of BBrin
CH.CI, at room temperature led to quantitative cleavage of the Si
C(sp) bonds over a period of 24 h. TAS8 NMR resonance of the
resulting polymePT-BBr, atd = 50 compares favorably with that
of the modelQT-BBr; atd = 51. As expected for the attachment
of electron-withdrawing boryl groups, the protons adjacent to the
functional groups experience a pronounced downfield shift from
O0(*H) = 7.02 inPT-SiMe; to 6(*H) = 7.66 for PT-BBr .

The soluble borylated polymeé?T-BBr, was used in situ for
exchange of the bromide substituents with nucleophilic reagents.
The dimesitylboryl-substituted polythiopheRd-BMes, was ob-
tained as a red solid in ca. 68% yield upon treatmer®BfBBr ,
with the arylcopper reagent mesitylcopper, (MesQn)= 4, 5)8

substitution with electron-withdrawing Mg&groups inQT-BMes,,

an almost coplanar conformation with small dihedral angles of
15.16(9Y is realized despite the steric bulk of the substituents
(Figure 1). Similar conformations are likely also encountered for
the polymer, providing for favorable electronic communicafion.
DFT calculations orQT-BMes, revealed that the HOMO level is
situated on the quaterthiophene chain, while the LUMO level shows
additional strong contributions from the empty p-orbitals on B that
effectively overlap with the quaterthiophenesystem (Figure 1).
DFT further indicates that the LUMO level &T-BMes; is lowered

by 0.326 eV relative to that @ T-SiMe3, and the HOMG-LUMO

gap decreases by 0.408 eV.

The absorption spectra fT-SiMez andQT-BMes; in CH,Cl,
display maxima at 357 and 412 nm, respectively, which are well
reproduced by TD-DFT calculations, and correspond to excitation
from the HOMO to the LUMO levels. FA@QT-BMes,, an additional

at elevated temperature and subsequent precipitation into coldband is observed at 340 nm, which is primarily due to excitation

hexanesPT-BMes; is stable in air for several weeks as a solid or
in solution. The polymer was fully characterized by multinuclear
NMR spectroscopy. The large downfield shift in tH8 NMR to
0 = 62 for PT-BMes; in comparison tad = 50 for PT-BBr; is
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to a cross-conjugated state (LUMQ) with orbital contributions
from the central bithiophene moiety and two BMes fragments (see
Figure S5 of Supporting Informatio&).The polymers display very
similar absorptions that are red shifted by about 25 to 30 nm,
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polymers with electron-deficient boryl groups as a new design
principle for the preparation of electronically interesting materials
is demonstrated. The new synthetic route to borylated poly-
thiophenes will likely also open up opportunities in the area of
sensor materials and the preparation of other polythiophenes through
Suzuki-type coupling chemistiy.
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Figure 1. ORTEP plot (50% thermal ellipsoids; hydrogen atoms and a

disordered CHGImolecule are omitted) and HOMO and LUMO orbital Supporting Information Available: Additional details of experi-
plots from DFT calculations (contour value 0.02) @QT-BMes;. mental and theoretical studies for all polymers and models; full ref 4g.
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